Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Appl Physiol (1985) ; 136(4): 966-976, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420681

RESUMEN

It is commonly assumed that changes in plasma strong ion difference (SID) result in equal changes in whole blood base excess (BE). However, at varying pH, albumin ionic-binding and transerythrocyte shifts alter the SID of plasma without affecting that of whole blood (SIDwb), i.e., the BE. We hypothesize that, during acidosis, 1) an expected plasma SID (SIDexp) reflecting electrolytes redistribution can be predicted from albumin and hemoglobin's charges, and 2) only deviations in SID from SIDexp reflect changes in SIDwb, and therefore, BE. We equilibrated whole blood of 18 healthy subjects (albumin = 4.8 ± 0.2 g/dL, hemoglobin = 14.2 ± 0.9 g/dL), 18 septic patients with hypoalbuminemia and anemia (albumin = 3.1 ± 0.5 g/dL, hemoglobin = 10.4 ± 0.8 g/dL), and 10 healthy subjects after in vitro-induced isolated anemia (albumin = 5.0 ± 0.2 g/dL, hemoglobin = 7.0 ± 0.9 g/dL) with varying CO2 concentrations (2-20%). Plasma SID increased by 12.7 ± 2.1, 9.3 ± 1.7, and 7.8 ± 1.6 mEq/L, respectively (P < 0.01) and its agreement (bias[limits of agreement]) with SIDexp was strong: 0.5[-1.9; 2.8], 0.9[-0.9; 2.6], and 0.3[-1.4; 2.1] mEq/L, respectively. Separately, we added 7.5 or 15 mEq/L of lactic or hydrochloric acid to whole blood of 10 healthy subjects obtaining BE of -6.6 ± 1.7, -13.4 ± 2.2, -6.8 ± 1.8, and -13.6 ± 2.1 mEq/L, respectively. The agreement between ΔBE and ΔSID was weak (2.6[-1.1; 6.3] mEq/L), worsening with varying CO2 (2-20%): 6.3[-2.7; 15.2] mEq/L. Conversely, ΔSIDwb (the deviation of SID from SIDexp) agreed strongly with ΔBE at both constant and varying CO2: -0.1[-2.0; 1.7], and -0.5[-2.4; 1.5] mEq/L, respectively. We conclude that BE reflects only changes in plasma SID that are not expected from electrolytes redistribution, the latter being predictable from albumin and hemoglobin's charges.NEW & NOTEWORTHY This paper challenges the assumed equivalence between changes in plasma strong ion difference (SID) and whole blood base excess (BE) during in vitro acidosis. We highlight that redistribution of strong ions, in the form of albumin ionic-binding and transerythrocyte shifts, alters SID without affecting BE. We demonstrate that these expected SID alterations are predictable from albumin and hemoglobin's charges, or from the noncarbonic whole blood buffer value, allowing a better interpretation of SID and BE during in vitro acidosis.


Asunto(s)
Desequilibrio Ácido-Base , Acidosis , Anemia , Humanos , Equilibrio Ácido-Base , Concentración de Iones de Hidrógeno , Dióxido de Carbono , Electrólitos , Hemoglobinas , Albúminas/efectos adversos
2.
Anesthesiology ; 140(1): 116-125, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37616330

RESUMEN

BACKGROUND: Several studies explored the interdependence between Paco2 and bicarbonate during respiratory acid-base derangements. The authors aimed to reframe the bicarbonate adaptation to respiratory disorders according to the physical-chemical approach, hypothesizing that (1) bicarbonate concentration during respiratory derangements is associated with strong ion difference; and (2) during acute respiratory disorders, strong ion difference changes are not associated with standard base excess. METHODS: This is an individual participant data meta-analysis from multiple canine and human experiments published up to April 29, 2021. Studies testing the effect of acute or chronic respiratory derangements and reporting the variations of Paco2, bicarbonate, and electrolytes were analyzed. Strong ion difference and standard base excess were calculated. RESULTS: Eleven studies were included. Paco2 ranged between 21 and 142 mmHg, while bicarbonate and strong ion difference ranged between 12.3 and 43.8 mM, and 32.6 and 60.0 mEq/l, respectively. Bicarbonate changes were linearly associated with the strong ion difference variation in acute and chronic respiratory derangement (ß-coefficient, 1.2; 95% CI, 1.2 to 1.3; P < 0.001). In the acute setting, sodium variations justified approximately 80% of strong ion difference change, while a similar percentage of chloride variation was responsible for chronic adaptations. In the acute setting, strong ion difference variation was not associated with standard base excess changes (ß-coefficient, -0.02; 95% CI, -0.11 to 0.07; P = 0.719), while a positive linear association was present in chronic studies (ß-coefficient, 1.04; 95% CI, 0.84 to 1.24; P < 0.001). CONCLUSIONS: The bicarbonate adaptation that follows primary respiratory alterations is associated with variations of strong ion difference. In the acute phase, the variation in strong ion difference is mainly due to sodium variations and is not paralleled by modifications of standard base excess. In the chronic setting, strong ion difference changes are due to chloride variations and are mirrored by standard base excess.


Asunto(s)
Equilibrio Ácido-Base , Bicarbonatos , Humanos , Animales , Perros , Cloruros/farmacología , Sodio/farmacología , Concentración de Iones de Hidrógeno
5.
Ann Intensive Care ; 13(1): 24, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37010706

RESUMEN

BACKGROUND: To evaluate the differences in the clinical characteristics and severity of lung impairment, assessed by quantitative lung CT scan, between vaccinated and non-vaccinated hospitalized patients with COVID-19; and to identify the variables with best prognostic prediction according to SARS-CoV-2 vaccination status. We recorded clinical, laboratory and quantitative lung CT scan data in 684 consecutive patients [580 (84.8%) vaccinated, and 104 (15.2%) non-vaccinated], admitted between January and December 2021. RESULTS: Vaccinated patients were significantly older 78 [69-84] vs 67 [53-79] years and with more comorbidities. Vaccinated and non-vaccinated patients had similar PaO2/FiO2 (300 [252-342] vs 307 [247-357] mmHg; respiratory rate 22 [8-26] vs 19 [18-26] bpm); total lung weight (918 [780-1069] vs 954 [802-1149] g), lung gas volume (2579 [1801-3628] vs 2370 [1675-3289] mL) and non-aerated tissue fraction (10 [7.3-16.0] vs 8.5 [6.0-14.1] %). The overall crude hospital mortality was similar between the vaccinated and non-vaccinated group (23.1% vs 21.2%). However, Cox regression analysis, adjusted for age, ethnicity, age unadjusted Charlson Comorbidity Index and calendar month of admission, showed a 40% reduction in hospital mortality in the vaccinated patients (HRadj = 0.60, 95%CI 0.38-0.95). CONCLUSIONS: Hospitalized vaccinated patients with COVID-19, although older and with more comorbidities, presented a similar impairment in gas exchange and lung CT scan compared to non-vaccinated patients, but were at a lower risk of mortality.

6.
Minerva Anestesiol ; 89(6): 577-585, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37000017

RESUMEN

COVID-19 pandemic has seen an unprecedented number of patients presenting with acute respiratory distress syndrome to the intensive care units all over the world. Between August and November 2022, we performed research on PubMed screening all publications on COVID-19 disease and respiratory failure and its treatment. In this review we focused on COVID-19 most common manifestations concerning lung function. The respiratory infection develops in three broad phases: early, intermediate, and late. The mainstay of the disease is the frequent presence of severe hypoxemia associated - at least at the beginning - to a near normal lung mechanics and PaCO2 tension. The management of symptomatic patients, progressing through these temporal phases, is not possible without understanding the pathophysiology underlying the respiratory manifestation.


Asunto(s)
COVID-19 , Trastornos Respiratorios , Síndrome de Dificultad Respiratoria , Humanos , SARS-CoV-2 , Pandemias , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia
7.
Am J Respir Crit Care Med ; 207(9): 1183-1193, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36848321

RESUMEN

Rationale: In the EOLIA (ECMO to Rescue Lung Injury in Severe ARDS) trial, oxygenation was similar between intervention and conventional groups, whereas [Formula: see text]e was reduced in the intervention group. Comparable reductions in ventilation intensity are theoretically possible with low-flow extracorporeal CO2 removal (ECCO2R), provided oxygenation remains acceptable. Objectives: To compare the effects of ECCO2R and extracorporeal membrane oxygenation (ECMO) on gas exchange, respiratory mechanics, and hemodynamics in animal models of pulmonary (intratracheal hydrochloric acid) and extrapulmonary (intravenous oleic acid) lung injury. Methods: Twenty-four pigs with moderate to severe hypoxemia (PaO2:FiO2 ⩽ 150 mm Hg) were randomized to ECMO (blood flow 50-60 ml/kg/min), ECCO2R (0.4 L/min), or mechanical ventilation alone. Measurements and Main Results: [Formula: see text]o2, [Formula: see text]co2, gas exchange, hemodynamics, and respiratory mechanics were measured and are presented as 24-hour averages. Oleic acid versus hydrochloric acid showed higher extravascular lung water (1,424 ± 419 vs. 574 ± 195 ml; P < 0.001), worse oxygenation (PaO2:FiO2 = 125 ± 14 vs. 151 ± 11 mm Hg; P < 0.001), but better respiratory mechanics (plateau pressure 27 ± 4 vs. 30 ± 3 cm H2O; P = 0.017). Both models led to acute severe pulmonary hypertension. In both models, ECMO (3.7 ± 0.5 L/min), compared with ECCO2R (0.4 L/min), increased mixed venous oxygen saturation and oxygenation, and improved hemodynamics (cardiac output = 6.0 ± 1.4 vs. 5.2 ± 1.4 L/min; P = 0.003). [Formula: see text]o2 and [Formula: see text]co2, irrespective of lung injury model, were lower during ECMO, resulting in lower PaCO2 and [Formula: see text]e but worse respiratory elastance compared with ECCO2R (64 ± 27 vs. 40 ± 8 cm H2O/L; P < 0.001). Conclusions: ECMO was associated with better oxygenation, lower [Formula: see text]o2, and better hemodynamics. ECCO2R may offer a potential alternative to ECMO, but there are concerns regarding its effects on hemodynamics and pulmonary hypertension.


Asunto(s)
Lesión Pulmonar Aguda , Hipertensión Pulmonar , Animales , Dióxido de Carbono , Ácido Clorhídrico , Ácido Oléico , Respiración Artificial/métodos , Porcinos
8.
Br J Anaesth ; 130(3): 360-367, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36470747

RESUMEN

BACKGROUND: Ventilatory ratio (VR) has been proposed as an alternative approach to estimate physiological dead space. However, the absolute value of VR, at constant dead space, might be affected by venous admixture and CO2 volume expired per minute (VCO2). METHODS: This was a retrospective, observational study of mechanically ventilated patients with acute respiratory distress syndrome (ARDS) in the UK and Italy. Venous admixture was either directly measured or estimated using the surrogate measure PaO2/FiO2 ratio. VCO2 was estimated through the resting energy expenditure derived from the Harris-Benedict formula. RESULTS: A total of 641 mechanically ventilated patients with mild (n=65), moderate (n=363), or severe (n=213) ARDS were studied. Venous admixture was measured (n=153 patients) or estimated using the PaO2/FiO2 ratio (n=448). The VR increased exponentially as a function of the dead space, and the absolute values of this relationship were a function of VCO2. At a physiological dead space of 0.6, VR was 1.1, 1.4, and 1.7 in patients with VCO2 equal to 200, 250, and 300, respectively. VR was independently associated with mortality (odds ratio [OR]=2.5; 95% confidence interval [CI], 1.8-3.5), but was not associated when adjusted for VD/VTphys, VCO2, PaO2/FiO2 (ORadj=1.2; 95% CI, 0.7-2.1). These three variables remained independent predictors of ICU mortality (VD/VTphys [ORadj=17.9; 95% CI, 1.8-185; P<0.05]; VCO2 [ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]; and PaO2/FiO2 (ORadj=0.99; 95% CI, 0.99-1.00; P<0.001]). CONCLUSIONS: VR is a useful aggregate variable associated with outcome, but variables not associated with ventilation (VCO2 and venous admixture) strongly contribute to the high values of VR seen in patients with severe illness.


Asunto(s)
Síndrome de Dificultad Respiratoria , Humanos , Estudios Retrospectivos , Síndrome de Dificultad Respiratoria/terapia , Respiración , Italia , Espacio Muerto Respiratorio , Respiración Artificial
9.
Front Physiol ; 13: 1009378, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338486

RESUMEN

Non-carbonic buffer power (ßNC) of blood is a pivotal concept in acid-base physiology as it is employed in several acid-base evaluation techniques, including the Davenport nomogram and the Van Slyke equation used for Base excess estimation in blood. So far, ßNC has been assumed to be independent of metabolic acid-base status of blood, despite theoretical rationale for the contrary. In the current study, we used CO2 tonometry to assess ßNC in blood samples from 10 healthy volunteers, simultaneously analyzing the electrolyte shifts across the red blood cell membrane as these shifts translate the action of intracellular non-carbonic buffers to plasma. The ßNC of the blood was re-evaluated after experimental induction of metabolic acidosis obtained by adding a moderate or high amount of either hydrochloric or lactic acid to the samples. Moreover, the impact of ßNC and pCO2 on the Base excess of blood was examined. In the control samples, ßNC was 28.0 ± 2.5 mmol/L. In contrast to the traditional assumptions, our data showed that ßNC rose by 0.36 mmol/L for each 1 mEq/l reduction in plasma strong ion difference (p < 0.0001) and was independent of the acid used. This could serve as a protective mechanism that increases the resilience of blood to the combination of metabolic and respiratory acidosis. Sodium and chloride were the only electrolytes whose plasma concentration changed relevantly during CO2 titration. Although no significant difference was found between the electrolyte shifts in the two types of acidosis, we observed a slightly higher rate of chloride change in hyperchloremic acidosis, while the variation of sodium was more pronounced in lactic acidosis. Lastly, we found that the rise of ßNC in metabolic acidosis did not induce a clinically relevant bias in the calculation of Base excess of blood and confirmed that the Base excess of blood was little affected by a wide range of pCO2.

10.
J Appl Physiol (1985) ; 133(5): 1212-1219, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36173324

RESUMEN

The amount of energy delivered to the respiratory system is recognized as a cause of ventilator-induced lung injury (VILI). How energy dissipation within the lung parenchyma causes damage is still a matter of debate. Expiratory flow control has been proposed as a strategy to reduce the energy dissipated into the respiratory system during expiration and, possibly, VILI. We studied 22 healthy pigs (29 ± 2 kg), which were randomized into a control (n = 11) and a valve group (n = 11), where the expiratory flow was controlled through a variable resistor. Both groups were ventilated with the same tidal volume, positive end-expiratory pressure (PEEP), and inspiratory flow. Electric impedance tomography was continuously acquired. At completion, lung weight, wet-to-dry ratios, and histology were evaluated. The total mechanical power was similar in the control and valve groups (8.54 ± 0.83 J·min-1 and 8.42 ± 0.54 J·min-1, respectively, P = 0.552). The total energy dissipated within the whole system (circuit + respiratory system) was remarkably different (4.34 ± 0.66 vs. 2.62 ± 0.31 J/min, P < 0.001). However, most of this energy was dissipated across the endotracheal tube (2.87 ± 0.3 vs. 1.88 ± 0.2 J/min, P < 0.001). The amount dissipated into the respiratory system averaged 1.45 ± 0.5 in controls versus 0.73 ± 0.16 J·min-1 in the valve group, P < 0.001. Although respiratory mechanics, gas exchange, hemodynamics, wet-to-dry ratios, and histology were similar in the two groups, the decrease of end-expiratory lung impedance was significantly greater in the control group (P = 0.02). We conclude that with our experimental conditions, the reduction of energy dissipated in the respiratory system did not lead to appreciable differences in VILI.NEW & NOTEWORTHY Energy dissipation within the respiratory system is a factor promoting ventilator-induced lung injury (VILI). In this animal study, we modulated the expiratory flow, reducing the energy dissipated in the system. However, this reduction happened mostly across the endotracheal tube, and only partly in the respiratory system. Therefore, in healthy lungs, the advantage in energy dissipation does not reduce VILI, but the advantages might be more relevant in diseased lungs under injurious ventilation.


Asunto(s)
Lesión Pulmonar , Lesión Pulmonar Inducida por Ventilación Mecánica , Animales , Porcinos , Lesión Pulmonar Inducida por Ventilación Mecánica/etiología , Volumen de Ventilación Pulmonar , Respiración con Presión Positiva/métodos , Mecánica Respiratoria , Espiración , Respiración Artificial/efectos adversos , Respiración Artificial/métodos , Pulmón
11.
Am J Respir Crit Care Med ; 206(8): 973-980, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35608503

RESUMEN

Rationale: Weaning from venovenous extracorporeal membrane oxygenation (VV-ECMO) is based on oxygenation and not on carbon dioxide elimination. Objectives: To predict readiness to wean from VV-ECMO. Methods: In this multicenter study of mechanically ventilated adults with severe acute respiratory distress syndrome receiving VV-ECMO, we investigated a variable based on CO2 elimination. The study included a prospective interventional study of a physiological cohort (n = 26) and a retrospective clinical cohort (n = 638). Measurements and Main Results: Weaning failure in the clinical and physiological cohorts were 37% and 42%, respectively. The main cause of failure in the physiological cohort was high inspiratory effort or respiratory rate. All patients exhaled similar amounts of CO2, but in patients who failed the weaning trial, [Formula: see text]e was higher to maintain the PaCO2 unchanged. The effort to eliminate one unit-volume of CO2, was double in patients who failed (68.9 [42.4-123] vs. 39 [20.1-57] cm H2O/[L/min]; P = 0.007), owing to the higher physiological Vd (68 [58.73] % vs. 54 [41.64] %; P = 0.012). End-tidal partial carbon dioxide pressure (PetCO2)/PaCO2 ratio was a clinical variable strongly associated with weaning outcome at baseline, with area under the receiver operating characteristic curve of 0.87 (95% confidence interval [CI], 0.71-1). Similarly, the PetCO2/PaCO2 ratio was associated with weaning outcome in the clinical cohort both before the weaning trial (odds ratio, 4.14; 95% CI, 1.32-12.2; P = 0.015) and at a sweep gas flow of zero (odds ratio, 13.1; 95% CI, 4-44.4; P < 0.001). Conclusions: The primary reason for weaning failure from VV-ECMO is high effort to eliminate CO2. A higher PetCO2/PaCO2 ratio was associated with greater likelihood of weaning from VV-ECMO.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Síndrome de Dificultad Respiratoria , Adulto , Dióxido de Carbono , Humanos , Estudios Prospectivos , Síndrome de Dificultad Respiratoria/terapia , Estudios Retrospectivos
12.
Intensive Care Med ; 48(8): 1080-1083, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35639122
13.
Neurocrit Care ; 37(1): 102-110, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35199305

RESUMEN

BACKGROUND: Hyperventilation resulting in hypocapnic alkalosis (HA) is frequently encountered in spontaneously breathing patients with acute cerebrovascular conditions. The underlying mechanisms of this respiratory response have not been fully elucidated. The present study describes, applying the physical-chemical approach, the acid-base characteristics of cerebrospinal fluid (CSF) and arterial plasma of spontaneously breathing patients with aneurismal subarachnoid hemorrhage (SAH) and compares these results with those of control patients. Moreover, it investigates the pathophysiologic mechanisms leading to HA in SAH. METHODS: Patients with SAH admitted to the neurological intensive care unit and patients (American Society of Anesthesiologists physical status of 1 and 2) undergoing elective surgery under spinal anesthesia were enrolled. CSF and arterial samples were collected simultaneously. Electrolytes, strong ion difference (SID), partial pressure of carbon dioxide (PCO2), weak noncarbonic acids (ATOT), and pH were measured in CSF and arterial blood samples. RESULTS: Twenty spontaneously breathing patients with SAH and 25 controls were enrolled. The CSF of patients with SAH, as compared with controls, was characterized by a lower SID (23.1 ± 2.3 vs. 26.5 ± 1.4 mmol/L, p < 0.001) and PCO2 (40 ± 4 vs. 46 ± 3 mm Hg, p < 0.001), whereas no differences in ATOT (1.2 ± 0.5 vs. 1.2 ± 0.2 mmol/L, p = 0.95) and pH (7.34 ± 0.06 vs. 7.35 ± 0.02, p = 0.69) were observed. The reduced CSF SID was mainly caused by a higher lactate concentration (3.3 ± 1.3 vs. 1.4 ± 0.2 mmol/L, p < 0.001). A linear association (r = 0.71, p < 0.001) was found between CSF SID and arterial PCO2. A higher proportion of patients with SAH were characterized by arterial HA, as compared with controls (40 vs. 4%, p = 0.003). A reduced CSF-to-plasma difference in PCO2 was observed in nonhyperventilating patients with SAH (0.4 ± 3.8 vs. 7.8 ± 3.7 mm Hg, p < 0.001). CONCLUSIONS: Patients with SAH have a reduction of CSF SID due to an increased lactate concentration. The resulting localized acidifying effect is compensated by CSF hypocapnia, yielding normal CSF pH values and resulting in a higher incidence of arterial HA.


Asunto(s)
Hemorragia Subaracnoidea , Humanos , Equilibrio Ácido-Base , Lactatos/líquido cefalorraquídeo , Presión Parcial
14.
J Appl Physiol (1985) ; 131(2): 464-473, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34138647

RESUMEN

Patients with sepsis have typically reduced concentrations of hemoglobin and albumin, the major components of noncarbonic buffer power (ß). This could expose patients to high pH variations during acid-base disorders. The objective of this study is to compare, in vitro, noncarbonic ß of patients with sepsis with that of healthy volunteers, and evaluate its distinct components. Whole blood and isolated plasma of 18 patients with sepsis and 18 controls were equilibrated with different CO2 mixtures. Blood gases, pH, and electrolytes were measured. Noncarbonic ß and noncarbonic ß due to variations in strong ion difference (ßSID) were calculated for whole blood. Noncarbonic ß and noncarbonic ß normalized for albumin concentrations (ßNORM) were calculated for isolated plasma. Representative values at pH = 7.40 were compared. Albumin proteoforms were evaluated via two-dimensional electrophoresis. Hemoglobin and albumin concentrations were significantly lower in patients with sepsis. Patients with sepsis had lower noncarbonic ß both of whole blood (22.0 ± 1.9 vs. 31.6 ± 2.1 mmol/L, P < 0.01) and plasma (0.5 ± 1.0 vs. 3.7 ± 0.8 mmol/L, P < 0.01). Noncarbonic ßSID was lower in patients (16.8 ± 1.9 vs. 24.4 ± 1.9 mmol/L, P < 0.01) and strongly correlated with hemoglobin concentration (r = 0.94, P < 0.01). Noncarbonic ßNORM was lower in patients [0.01 (-0.01 to 0.04) vs. 0.08 (0.06-0.09) mmol/g, P < 0.01]. Patients with sepsis and controls showed different amounts of albumin proteoforms. Patients with sepsis are exposed to higher pH variations for any given change in CO2 due to lower concentrations of noncarbonic buffers and, possibly, an altered buffering function of albumin. In both patients with sepsis and healthy controls, electrolyte shifts are the major buffering mechanism during respiratory acid-base disorders.NEW & NOTEWORTHY Patients with sepsis are poorly protected against acute respiratory acid-base derangements due to a lower noncarbonic buffer power, which is caused both by a reduction in the major noncarbonic buffers, i.e. hemoglobin and albumin, and by a reduced buffering capacity of albumin. Electrolyte shifts from and to the red blood cells determining acute variations in strong ion difference are the major buffering mechanism during acute respiratory acid-base disorders.


Asunto(s)
Desequilibrio Ácido-Base , Sepsis , Equilibrio Ácido-Base , Ácidos , Análisis de los Gases de la Sangre , Humanos , Concentración de Iones de Hidrógeno
15.
Crit Care Med ; 48(12): e1327-e1331, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031149

RESUMEN

OBJECTIVES: Extracorporeal respiratory support, including low blood flow systems providing mainly extracorporeal CO2 removal, are increasingly applied in clinical practice. Gas exchange physiology during extracorporeal respiratory support is complex and differs between full extracorporeal membrane oxygenation and extracorporeal CO2 removal. Aim of the present article is to review pathophysiological aspects which are relevant for the understanding of hypoxemia development during extracorporeal CO2 removal. We will describe the mathematical and physiologic background underlying changes in respiratory quotient and alveolar oxygen tension during venovenous extracorporeal gas exchange and highlight the clinical implications. DESIGN: Theoretical analysis of venovenous extracorporeal gas exchange. SETTING: Italian university research hospital. PATIENTS: None. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: While the effect of extracorporeal CO2 removal on the respiratory quotient of the native lung has long been known, the role of extracorporeal oxygenation in dictating changes in the respiratory quotient has been less addressed. Indeed, both extracorporeal CO2 removal and extracorporeal oxygen delivery affect the respiratory quotient of the native lung and thus influence the alveolar PO2. Indeed, for the same amount of extracorporeal CO2 extraction, it is possible to reduce the FIO2, reduce the risk of absorption atelectasis, and maintain the same alveolar PO2, by increasing the extracorporeal oxygen delivery. CONCLUSIONS: Worsening of hypoxemia is frequent during low-flow extracorporeal CO2 removal combined with ultraprotective mechanical ventilation. In this context, increasing extracorporeal oxygen delivery, increases the respiratory quotient of the native lung and could reduce both the occurrence of alveolar hypoxia and absorption atelectasis, thus optimizing the residual lung function.


Asunto(s)
Dióxido de Carbono/metabolismo , Oxigenación por Membrana Extracorpórea/métodos , Hipoxia/prevención & control , Consumo de Oxígeno , Dióxido de Carbono/sangre , Oxigenación por Membrana Extracorpórea/efectos adversos , Humanos , Hipoxia/fisiopatología , Modelos Biológicos , Consumo de Oxígeno/fisiología
16.
Anesthesiology ; 131(2): 336-343, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31094756

RESUMEN

WHAT WE ALREADY KNOW ABOUT THIS TOPIC: After pulmonary artery occlusion (mimicking a pulmonary embolism), perfusion is redistributed to the rest of the lung tissue, but the distribution of ventilation is uncertain. WHAT THIS ARTICLE TELLS US THAT IS NEW: Data from anesthetized pigs (uninjured lungs) indicate that the perfusion is redistributed as suspected. Similarly, ventilation is redistributed from nonperfused to perfused lung tissue. This limits the increase in dead space and is accompanied by less density in the occluded lung. BACKGROUND: Acute unilateral pulmonary arterial occlusion causes ventilation-perfusion mismatch of the affected lung area. A diversion of ventilation from nonperfused to perfused lung areas, limiting the increase in dead space, has been described. The hypothesis was that the occlusion of a distal branch of the pulmonary artery would cause local redistribution of ventilation and changes in regional lung densitometry as assessed with quantitative computed tomography. METHODS: In eight healthy, anesthetized pigs (18.5 ± 3.8 kg) ventilated with constant ventilatory settings, respiratory mechanics, arterial blood gases, and quantitative computed tomography scans were recorded at baseline and 30 min after the inflation of the balloon of a pulmonary artery catheter. Regional (left vs. right lung and perfused vs. nonperfused area) quantitative computed tomography was performed. RESULTS: The balloon always occluded a branch of the left pulmonary artery perfusing approximately 30% of lung tissue. Physiologic dead space increased (0.37 ± 0.17 vs. 0.43 ± 0.17, P = 0.005), causing an increase in PaCO2 (39.8 [35.2 to 43.0] vs. 41.8 [37.5 to 47.1] mmHg, P = 0.008) and reduction in pH (7.46 [7.42 to 7.50] vs. 7.42 [7.38 to 7.47], P = 0.008). Respiratory system compliance was reduced (24.4 ± 4.2 vs. 22.8 ± 4.8 ml · cm H2O, P = 0.028), and the reduction was more pronounced in the left hemithorax. Quantitative analysis of the nonperfused lung area revealed a significant reduction in lung density (-436 [-490 to -401] vs. -478 [-543 to -474] Hounsfield units, P = 0.016), due to a reduction in lung tissue (90 ± 23 vs. 81 ± 22 g, P < 0.001) and an increase in air volume (70 ± 22 vs. 82 ± 26 ml, P = 0.022). CONCLUSIONS: Regional pulmonary vascular occlusion is associated with a diversion of ventilation from nonperfused to perfused lung areas. This compensatory mechanism effectively limits ventilation perfusion mismatch. Quantitative computed tomography documented acute changes in lung densitometry after pulmonary vascular occlusion. In particular, the nonperfused lung area showed an increase in air volume and reduction in tissue mass, resulting in a decreased lung density.


Asunto(s)
Pulmón/fisiopatología , Arteria Pulmonar/fisiopatología , Embolia Pulmonar/fisiopatología , Animales , Modelos Animales de Enfermedad , Femenino , Pulmón/diagnóstico por imagen , Arteria Pulmonar/diagnóstico por imagen , Porcinos , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...